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Abstract. Load forecasting is of great significance to improve power system safety and reliability. Aiming 

at the problems of low electric load forecast accuracy and strong randomness, a combined load forecast 

method based on ensemble empirical mode decomposition is proposed. First, ensemble empirical mode 

decomposition is used to decompose the load data into intrinsic mode functions with different frequencies, 

and the sample matrix is formed according to decomposed components. Then, principal component analysis 

is used to construct a transformation matrix which is used to reduce the noise of the sample matrix, unit root 

test is used to judge the stability of each component of the sample matrix after noise reduction. If the 

component is judged to be stationary, multiple linear regression is used to forecast. If the component is 

judged to be non-stationary, long short term memory is used to forecast. Superimpose the results of each 

component to get the final load forecast result. Based on the proposed method, the load of a certain area in 

Shanxi is forecasted and compared with other methods. The results show that this method can forecast the 

load more effectively while reducing the noise of the load. 
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1. Introduction  

Load forecasting has an important position in the operation of modern power systems, and accurate 

forecasting is of great significance for ensuring the safe and stable operation of the power grid and improving 

economic benefits [1]. The electrical load has a certain periodicity, but the collected load data often contain 

noise. Noise is generated by factors such as weather, holidays, and equipment accuracy, which affects the 

trend of load to a certain extent, making load exhibits strong randomness and becomes no longer stable, 

which brings certain difficulties to short-term forecasting. 

At present, there are a variety of methods used in load forecasting, which can be roughly divided into 

three categories: traditional methods, machine learning methods, and combined methods. Traditional 

forecasting methods based on statistical methods, such as time series [2], linear regression [3], etc., have 

simple models and fast prediction speeds but are susceptible to random noise interference [4], therefore it is 

particularly important to reduce the noise of the data before forecasting. Machine learning forecasting 

methods, such as neural networks [5-7], support vector machines [8], etc., have relatively complex models, 

slow running speeds, and high resource consumption, and the forecasting results largely depend on the 

quality of the data [9]. Because traditional forecasting methods and machine learning forecasting methods 

have certain limitations, combined forecasting methods have been produced, such as the Shapley value 

method [10], decision theory [11], etc., which use weight distribution to combine multiple forecasting 

methods to improve accuracy, but this method is only for a certain data, generalization ability is weak; 

another combined forecasting method is load decomposition, such as wavelet decomposition [7], empirical 

mode decomposition (EMD) [6,12], etc., the load data is decomposed into components of different time 

scales, and forecasted separately. This method can often improve the forecasting effect. EMD decomposition 

solves the problem of artificial selection of wavelet base and decomposition layer in wavelet decomposition, 

but the result is prone to modal aliasing. Literature [13] uses an ensemble empirical mode decomposition 

(EEMD) to eliminate modal aliasing by adding white noise. The decomposed high-frequency components 
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usually contain a lot of noise. If they are directly discarded, the high-frequency detail information of the load 

may be lost, and the noise in other components cannot be eliminated. 

Given the above situation, literature [14] proposed a method of empirical mode decomposition based on 

principal component analysis (PCA) to reduce noise, using PCA transform to reconstruct intrinsic mode 

function (IMF) to achieve the purpose of noise reduction. Literature [15] uses gated recurrent unit neural 

network (GRU) for high-frequency components containing a large amount of noise, and multiple linear 

regression (MLR) for low-frequency components containing a small amount of noise, making full use of the 

accuracy of the machine learning forecasting methods in a large amount of noise and the speed of the 

traditional forecasting methods in a small amount of noise. 

In this regard, this article proposes a combined load forecasting method based on EEMD, which 

overcomes the shortcomings of traditional methods for data stability and the long training time of machine 

learning methods. Firstly, the load is decomposed into IMF components and residual function of different 

time scales through EEMD, and construct a sample matrix based on the decomposed components; then PCA 

is used to construct a transformation matrix according to the contribution rate to achieve noise reduction of 

the sample matrix; next the unit root test is used to judge the stationarity of each component, and different 

forecasting methods are selected according to the stationarity. When it is a stationary component, using 

traditional forecasting method MLR, when it is a non-stationary component, the machine learning 

forecasting method long short term memory (LSTM) is used; finally, the forecasting results of each 

component are superimposed to obtain the total forecasting result. The method in this article takes into 

account the influence of high-frequency component, the forecasting effect is better and accuracy is higher. 

2. Load Data Processing 

2.1. Ensemble Empirical Mode Decomposition 

The EMD [16] decomposes the nonlinear and non-stationary time series data according to the time scale 

of the series itself and obtains a limited number of IMF components with different time scales and a residual 

function. Each IMF component and the residual component must meet: 

 The difference between the number of extreme points and the number of zero-crossing points is less 

than or equal to 1 

 The mean value of the sum of the upper and lower envelopes is 0 

Due to equipment failures, noise interference and other factors, using the EMD to decompose the load 

data usually produce modal aliasing, resulting in a decrease in forecasting accuracy. The EEMD can reduce 

the occurrence of this phenomenon due to the addition of white noise [17]. 

By adding white noise sj that follows the Gaussian distribution into load x whose length is m, we can 

obtain a new time series xj (line 2 in Algorithm 1). Then perform EEMD on xj to obtain some IMF 

components Iji and a residual component rj (line 3 in Algorithm 1). The final EEMD decomposition result is 

shown in line 5 in Algorithm 1. According to the literature [18], the standard deviation of the white noise 

amplitude is selected as 0.2 times the standard deviation of the load data; the number of repetitions k is 100. 

 

2.2. Principal Component Analysis 

PCA [19] is commonly used for data dimensionality reduction and noise reduction, which converts 

multiple correlated components into unrelated principal components through orthogonal transformation, and 

calculates the contribution rate of each principal component. The smaller the contribution rate, the less useful 

information it contains. If the noise does not have a fixed direction, the noise can be reduced by discarding 
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the components with a relatively small contribution rate. The specific steps of PCA noise reduction are as 

follows: 

 

Usually, when cumulative contribution rate ɛ0 is equal to 0.85, the corresponding eigenvectors can 

express almost all original information. 

2.3. Unit Root Test 

The unit root test also called the extended Dick Fuller test, is used to test the stationarity of the series. If 

the series is stationary, there is no unit root; otherwise, there will contain a unit root. 

3. Load Forecasting Methods 

3.1. Multiple Linear Regression 

MLR is a traditional statistical forecasting method [3]. For periodic data, compared with other 

forecasting methods, MLR does not require parameter adjustment and iterative training, and the obtained 

forecasting values are more accurate. The matrix expression is as follows: 

 
b

Z X θ μ     (1) 

where Z is the forecasting value of stationary IMF component; Xb is the influencing factor of the forecasting 

value, here is the previous stationary IMF component; θ is the regression coefficient that is estimated by the 

least square method θ=(X
T 

b  Xb)
-1 X

T 

b  Z ; μ is the random disturbance. 

3.2. Long Short Term Memory  

LSTM [20] is a recurrent neural network (RNN) with a special structure. The gate and cell state can be 

used to avoid the disappearance of the RNN gradient to solve the problem of long-term dependence. LSTM 

is suitable for timing series problems and its neuron structure is shown in Figure 1 below. 
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Fig. 1: LSTM neuron structure 

where ht-1 is the output of the LSTM neuron at time t-1, ht is the output of the LSTM neuron at time t; Ct-1 is 

the cell state at time t-1, Ct is the cell state at time t; xt is the input of the LSTM neuron at time t ; σ is the 

sigmoid function. 

LSTM uses three gates to control the cell state: 
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 Forget gate: determine the information that should be discarded or retained in the cell state  

  1t f t t f
f σ W h x b


   ,   (2) 

 Input gate: update the cell state 

  1t i t t i
i σ W h x b


   ,   (3) 

  1t C t t C
C W h x b


    tanh ,   (4) 

 
1t t t t t

C f C i C


      (5) 

 Output gate: determine the final output result of the LSTM neuron 

  1t o t t o
o σ W h x b


   ,   (6) 

  t t t
h o C  tanh   (7) 

where W, b are the weight and bias of each gate. 

3.3. Load Combination Forecast Method Based on EEMD 

The combined load forecasting method based on EEMD reduces the noise of each IMF component while 

retaining the load information in the high-frequency IMF component. According to the stationarity of each 

component, different forecasting methods are adopted to makes the forecasting result more accurate. 

 

4. Case Study 

4.1. Data Display and Processing 

The load data in this article comes from a certain area in Shanxi from June 1 to June 30, 2018. The 

sampling interval is 1h and each collection point collects 24 data per day. Since the actual sampling process 

is affected by other factors such as equipment failure, noise interference, etc., there will be missing and 

abnormal data, so noise reduction processing is required. The load data is shown in Figure 2. It can be seen 

that the periodicity of the load is poor, and there are fluctuations and noises. It is difficult to obtain accurate 

results if the forecasting is made directly. 

The load data is decomposed by EEMD, and 9 IMF components and 1 residual component with 

frequency from high to low are obtained, as shown in Figure 3. It can be seen that through EEMD, there is 

no modal aliasing phenomenon in each component, and the frequency is relatively stable. 
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Fig. 2: Load data  
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 Fig. 3: EEMD decomposition results 

4.2. Noise Reduction Effect Comparison 

The IMF components and the residual component are formed into the original sample matrix, and PCA is 

performed to reduce noise. When the cumulative contribution rate is more than 85%, it can be considered 

that these components can express almost all the original information. The contribution rate of each 

component is shown in Table 1. The first three principal components are selected to form the transformation 

matrix to reduce the noise of the original sample matrix. The result of noise reduction is shown in Figure 4. 

The solid blue line is the original sample, and the red dashed line is the sample after noise reduction. It can 

be seen that by performing PCA noise reduction, the volatility of each component is significantly reduced 

and the trend is more obvious while retaining the detailed information related to the load in the high-

frequency components. 

Table 1: Contribution rate of Each Component 

Component Contribution rate / % Cumulative contribution rate / % 

First 52.20 52.20 

Second 30.57 82.77 

Third 9.97 92.74 

Fourth 4.75 97.49 

Remaining 2.51 100 

 

 
Fig. 4: Noise reduction effect 
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Another method of noise reduction is used to directly remove the high-frequency components of IMF1 

after EEMD decomposition. The comparison of the results of the two noise reduction methods is shown in 

Figure 5. In order to show the noise reduction effect more clearly, the data from June 1st to June 5th is 

selected to show. It can be seen that directly removing the IMF1 component will lose the load information 

related to the high-frequency components in the original data, making the subsequent forecasting results 

inaccurate. 

 
Fig. 5: Comparison of effects of two methods 

In order to further measure the noise reduction effect, the signal-to-noise ratio (SNR) and the correlation 

coefficient R are used to compare the effects of the two noise reduction methods. The larger the SNR and R, 

the better the noise reduction effect. The metrics of the two noise reduction methods are shown in Table 2. It 

can be seen that the effect of PCA noise reduction is better than removing the IMF1.  

Table 2: Comparison of metrics of the two noise reduction methods 

Method SNR R 

PCA 21.3209 0.9887 

Remove IMF1 -22.0787 0.8865 

4.3. Forecast Result Analysis 

Select the data from June 1st to June 29th, 2018 as the training set, and select the data from June 30th, 

2018 as the test set. In order to verify the effectiveness and superiority of the combined forecasting method, 

the MLR, LSTM and BP are used for comparative analysis, and the control variable method is used to set the 

same parameters to forecast the load on June 30, 2018. The result is shown in Figure 6. It can be seen that the 

forecasting results of the method in the article basically restore the trend of the real load, especially between 

9:00 and 17:00. The MLR basically forecasts the trend of the real load, but the load forecast value around 

5:00 to 7:00 has a large deviation. The deviation of the LSTM load forecast value at around 6:00 is relatively 

large. The BP is overall worse than other methods, which is caused by the BP neural network easily falling 

into the local optimum.  

In order to measure the forecasting accuracy of the method more accurately, mean square error (MSE), 

root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) 

are used for further comparative analysis. The four indicators all reflect the difference between the 

forecasting data and the real data, the smaller the better. 

The forecasting accuracy indicators of each method are shown in Table 3. It can be seen that the method 

in the article has reduced various indicators compared with other methods, indicating that the forecasting 

accuracy of the method in the article has improved compared with other methods, and the BP’s indicators are 

obviously larger than other methods, the image performance is that the curve fit is poor. 
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Fig. 6: Comparison of forecasting results  

 
Fig. 7: The relative error of the method in this article 

Table 3: Comparison of Different Forecasting Method 

Method MSE RMSE MAE MAPE 

MLR 0.0243 0.1559 0.1250 0.1604 

LSTM 0.0310 0.1761 0.1330 0.1647 

BP 0.0682 0.2612 0.2029 0.2699 

Method in this article 0.0062 0.0785 0.0636 0.0839 

Figure 7 shows the relative error value of the method in the article. It can be seen that the maximum 

relative error value is around 21:00, and most of the forecasting values at other times are less than 10%, 

indicating that the EEMD decomposition and PCA noise reduction help reflect the true load trend. The MLR 

forecasting method is used for the stationary component and the LSTM forecasting method is used for the 

non-stationary component, which can improve the forecasting accuracy and obtain more accurate forecasting 

results. 

5. Conclusion 

Aiming at the non-stationary characteristics of load affected by noise, a combined load forecasting 

method based on EEMD is proposed. Due to the influence of factors such as equipment failure and 

electromagnetic interference in the actual sampling process of load, the data obtained often contain noise, 

which has an adverse effect on subsequent research. Therefore, the sampled load data should first be 

denoised. The comparison with other forecasting methods shows that the combined forecasting method of 
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load based on EEMD can improve the forecasting accuracy while reducing the noise of load. Accurate load 

forecasting can provide guidance for grid planning and dispatch, rationally allocate resources, improve 

resource utilization, and reduce unnecessary equipment investment. 
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